

State of Alaska DHS-EM EQ Workshop

Anchorage Port Modernization Concept for Seismic Resiliency

Presented by: Todd Cowles, P.E. Port Engineer

PRESENTATION OVERVIEW

- Port of Anchorage Overview
- Modernization Program Phasing
- Seismic Performance Requirements
- Seismic Berth Concept Design Alternatives
- Questions

Port of Anchorage Overview

- Owned by the Municipality of Anchorage / Landlord Port
- Cargo: Petroleum, Cement, Container, Project Cargo
- Critical to Alaska (~3.5M tons of cargo in 2016)
 - 74% of all in-bound non-petroleum freight thru Southcentral ports
 - 95% of all refined petroleum products moving thru Southcentral ports
- Dept. of Defense Designated National Strategic Seaport

Port of Anchorage Facilities

Piling Condition

Terminal/POL	Age <i>(years)</i>	Min. Thickness Observed 2014	Percent Loss
Terminal 1	56	0.15″	67%
POL Terminal 1	52	0.15″	67%
Terminal 2	49	0.20"	55%
Terminal 3	44	0.18"	59%
POL Terminal 2	22	0.13"	71%

Jacket Repairs

- Primarily a vertical capacity enhancement
- Does not improve the seismic resilience of the Port
 - Simply "band-aids" a structure not designed to current codes
 - Continued risk of sediment liquefaction during EQ
- One-time fix

Anchorage Port Modernization Program

PHASING

APMP PHASE 1: NORTH EXTENSION STABILIZATION STEP 1 + PETROLEUM/CEMENT TERMINAL

APMP PHASE 2: TERMINAL 1 + TERMINAL 2

APMP PHASE 3: PETROLEUM TERMINAL

Anchorage Port Modernization Program

SEISMIC PERFORMANCE REQUIREMENTS

Seismic Berths (T2 and PCT)

Seismic Hazard Levels

Table 1-1. Peak Ground Acceleration – APMP

Location	Seismic Hazard Level	Return Period	Peak Ground Acceleration (g)		
Trestles	OLE	72 year	0.14		
	CLE	475 year	0.31 (+29%)		
	DE	1,000 year ^a	0.39 <mark>(+63%)</mark>		
Wharves	OLE	72 year	0.23 (approx. equal)		
	CLE	475 year	0.38 (+58%)		
	DE	1,000 year ^a	0.45 (+88%)		
1964 Alaska (areas aroun)	Earthquake d Anchorage)		0.18-0.24 ^b		
^a DE corresponds to 2/3 of the MCE, and corresponds to a ground motion of					
approximately 1,000-year return period.					

^b Recorded peak ground acceleration around Anchorage area. (USGS, 2008)

Seismic Performance Levels

Minimal Damage OLE	Controlled and Repairable Damage CLE	Life Safety Protection DE			
		Jo Or Stool			
Initial cracking and spalling of the pile and/or deck	Substantial spalling of the pile and the deck in the vicinity of the pile thereby exposing reinforcement in the pile and the deck	Broken connection from either spalling into the core, fractured dowel bars or buckled strand.			

Proposed Seismic Design Criteria – APMP

Seismic Design Criteria – APMP							
	Design						
Structure	Classification	Seismic Hazard Level	Seismic Performance Level				
New Terminal 2 and	Seismic Berth	OLE	Minimal damage				
approach trestles	Seismic Berth	CLE	Minimal damage*				
	Seismic Berth	DE	Life safety protection				
New Terminal 1 and	High	OLE	Minimal damage				
approach trestles	High	CLE	Controlled and repairable damage				
	High	DE	Life safety protection				
New POL 2 and approach	Moderate	OLE	Minimal damage				
trestle	Moderate	CLE	Controlled and repairable damage				
	Moderate	DE	Life safety protection				
New POL 1 and approach	Seismic Berth	OLE	Minimal damage				
trestle	Seismic Berth	CLE	Minimal damage*				
	Seismic Berth	DE	Life Safety Protection				

Notes:

DE (Design Earthquake) level is equivalent to 2/3 of MCE per ASCE 7-10. Ground motions from ASCE 7-10 exceed those from ASCE 7-05 specified in ASCE/COPRI 61-14.

* Seismic performance level above that required by ASCE/COPRI 61-14

MOA Geotechnical Advisory Commission Recommendations

 At a minimum, one container dock and one petroleum, oil and lubricants (POL) dock should be designed for "minimal damage" at the Contingency Level (CLE) ground motions, and "controlled and repairable damage" at the Design Earthquake (DE) ground motions. These structures are referred to as the "seismic berths".

MOA Geotechnical Advisory Commission Recommendations

 The GAC advises that the definition of "controlled and repairable damage" should be adjusted to mean damage which is feasibly repairable within several days to one week of the seismic event, and contingencies, plans and materials for the repair are to be included in the design to reduce response time. The GAC also recommends that the performance of the new port elements should consider the effects on repair and/or reconstruction schedules if a major earthquake occurs during the winter.

Seismic Design Criteria – Comparison

Seismic Design Criteria – APMP vs GAC

		Seismic		
Structure	Design Class	Hazard Level	Seismic Performance (APMP)	Seismic Performance (GAC)
New T2	Seismic	OLE	Minimal damage	Minimal damage
	Seismic	CLE	Minimal damage*	Minimal damage*
	Seismic	DE	Life safety protection	Controlled and repairable damage**
New T1	High	OLE	Minimal damage	Minimal damage
	High	CLE	Controlled and repairable damage	Controlled and repairable damage
	High	DE	Life safety protection	Life safety protection
New POL 2	Moderate	OLE	Minimal damage	Minimal damage
	Moderate	CLE	Controlled and repairable damage	Controlled and repairable damage
	Moderate	DE	Life safety protection	Life safety protection
New POL 1	Seismic	OLE	Minimal damage	Minimal damage
	Seismic	CLE	Minimal damage*	Minimal damage*
	Seismic	DE	Life Safety Protection	Controlled and repairable damage**

Notes:

DE (Design Earthquake) level is equivalent to 2/3 of MCE per ASCE 7-10. Ground motions from ASCE 7-10 exceed those from ASCE 7-05 specified in ASCE/COPRI 61-14.

- * Seismic performance level above that required by ASCE/COPRI 61-14
- ** Controlled and Repairable defined as functional within 1 week of EQ

Anchorage Port Modernization Program

SEISMIC BERTH CONCEPT DESIGN ALTERNATIVES

Design Alternatives

- Alternative 1: Restore lateral and vertical stability in the structure post-earthquake.
- Alternative 2: Rapidly deploy interim structures to provide contingency operations for post-earthquake essential cargo offloading.
- Alternative 3: Achieve minimum damage performance at the DE level so the two seismic berths are operational post-earthquake.

Seismic Container Berth Components

Seismic Berths (T2 and PCT)

TEMPORARY/EMERGENCY TRANSVERSE TRESTLE SECTION

ALT. 2

PILE ELEVATIONS

Alternative Scoring Matrix

 Table 5-6. Final Weighted Scoring Matrix

				Alternative 1		Alternative 2		Alternative 3	
No.	Objective	Measure	Weight	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Upfront	t Cost								
1	Minimize upfront cost	Lowest upfront cost	35	0.6	21	0.8	28	0.2	7
Initial R	lepair Cost								
2	Minimize repair cost	Lowest repair cost	10	0.6	6	0.4	4	1.0	10
Reconst	truction Cost								
3	Minimize reconstruction cost	Lowest reconstruction cost	10	0.6	6	0.4	4	0.8	8
Speed of	of Initial Repair								
4	Minimize downtime	Lowest downtime	25	0.8	20	0.8	20	1.0	25
Performance Confidence									
5	Confidence of Effectiveness	Most confident	20	0.6	12	1	20	0.2	4
		Total Weighted Score	100		65		76		54
Note:									

Weights and scores are only guides to assist in the evaluation of alternatives; they do not mandate automatic selection of any particular alternative.

APMP Concept for Seismic Resiliency is Alternative 2 – Temporary Modular Bridge

- Satisfies the GAC's recommended seismic performance requirements
- Lowest additional cost because the Terminal 2 temporary trestles are already included in the baseline program budget for construction phasing
- Highest confidence that it will work as planned
- Can be implemented within 7 days assuming that the handling equipment is available

QUESTIONS?

Todd Cowles, P.E. cowlestc@muni.org

